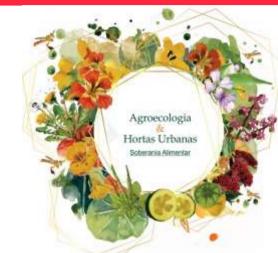


XXXII Encontro de Jovens Pesquisadores


e XIV Mostra Acadêmica de Inovação e Tecnologia

BIC-UCS

Avaliação da ação de biofermentado de frutos de sobre o fungo fitopatógeno *Sclerotium sp.*Biofermentados Fase II

Autores: Daniela Rodrigues Agrippa, Valdirene Camatti Sartori Laboratório de Controle Biológico de Doenças de Plantas/LCDP

INTRODUÇÃO / OBJETIVO

Vários compostos bioativos resultantes do metabolismo das plantas já são reconhecidos pela ação antimicrobiana, entretanto, a pesquisa em busca de novas substâncias naturais para uso junto a agricultura regenerativa se faz necessária. Sendo assim, o objetivo desse estudo foi avaliar a ação in vitro do biofermentado dos frutos de erva-mate (*Ilex paraguariensis*) e de tarumã (*Vitex megapotamica*) sobre o crescimento do fungo fitopatogênico *Sclerotium sp*.

MATERIAL E MÉTODOS

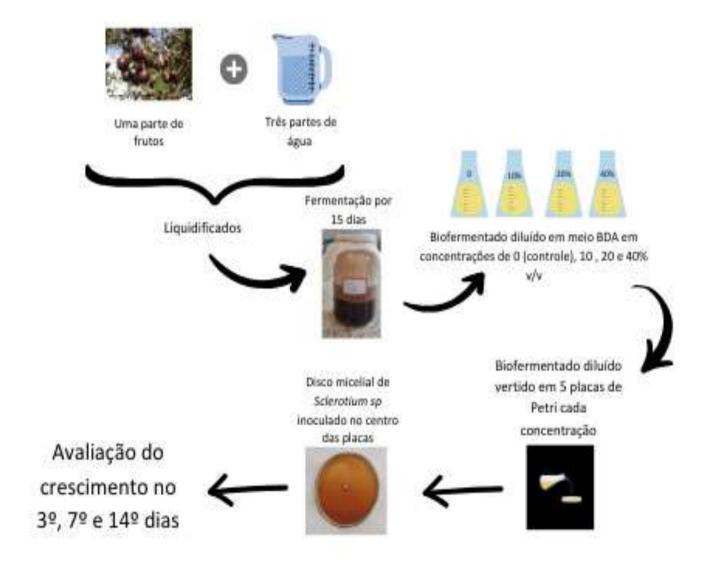
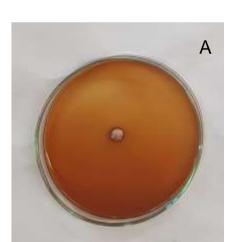


Figura 1: Preparo de fermentado botânico e avaliação no controle fúngico

RESULTADOS

De maneira geral, foram identificados maiores teores de compostos fenólicos e flavonóides nos fermentados de *V. megapotamica* e *I. paraguariensis*, quando comparado ao método recém-triturado.

Tabela 1: Teores de compostos fenólicos e flavonoides nos recém triturados e nos biofermentados de *V. megapotamica* e *I. paraguariensis*


	Compostos fenólicos (mg·100 mL ⁻¹)		Flavonoides (mg·100 mL ⁻¹)	
	Recém-triturados	Fermentados (EFF)	Recém-triturados	Fermentados (EFF)
Vitex megapotamica	42,75	597,67	172,52	540,53
llex paraguariensis	283,14	366,72	298,30	251,13

RESULTADOS

O fermentado de *V. megapotamica* inibiu 100% o desenvolvimento micelial do fitopatógeno *Sclerotium sp* nas concentrações de 20 e 40 %, e o fermentado de *I. paraguariensis* não apresentou atividade inibitória para este fungo.

Tabela 2: Porcentagem do controle inibitório dos biofermentados de *V. megapotamica* e *I. paraguariensis* nas concentrações de 10%, 20% e 40% sobre o desenvolvimento de *Sclerotium sp.*

Fermentado botânico	Concentração (% v/v)				
	Controle	10%	20%	40%	
Vitex megapotamica	0Aa	18,12B	100B	100B	
llex paraguariensis	0Aa	0Aa	0Aa	0Aa	

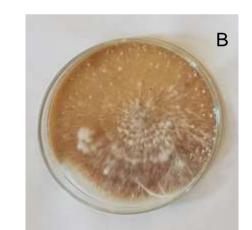


Figura 2: Desenvolvimento micelial de *Sclerotium sp.* após 14 dias da inoculação dos fermentados de *V. megapotamica* (A) e de *I. paraguariensis* (B)

CONSIDERAÇÕES FINAIS

Os resultados obtidos demonstram que compostos químicos de fermentados de frutos possuem potencial para controle de fungos fitopatogênicos de interesse agrícola.

REFERÊNCIAS BIBLIOGRÁFICAS

Hussain A, Bose S, Wang JH, Yadav MK, Mahajan GB, Kim H. Fermentation, a feasible strategy for enhancing bioactivity of herbal medicines. Food Res Inter 2016;81:1e16.

Mahmood, I.; Imadi, S.R.; Shazadi, K.; Gul, A.; Hakeem, K.R. Effects of pesticides on environment. In Plant, Soil and Microbes; Springer: Cham, Switzerland, 2016; pp. 253–269.

Tapas AR, Sakarkar DM, Kakde RB. Flavonoids as nutraceuticals: a review. Trop J Pharmaceutical Res. 2008;7:1089–99

